
Accelerating Apache Hive with MPI for Data
Warehouse Systems

Lu Chao 1,2, Chundian Li 1,2, Fan Liang 1,2, Xiaoyi Lu 1, Zhiwei Xu 1

1Institute of Computing Technology, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

{chaolu,lichundian,liangfan,luxiaoyi,zxu}@ict.ac.cn

Abstract—Data warehouse systems, like Apache Hive, have
been widely used in the distributed computing field. However,
current generation data warehouse systems have not fully em-
braced High Performance Computing (HPC) technologies even
though the trend of converging Big Data and HPC is emerging.
For example, in traditional HPC field, Message Passing Interface
(MPI) libraries have been optimized for HPC applications during
last decades to deliver ultra-high data movement performance.
Recent studies, like DataMPI, are extending MPI for Big Data
applications to bridge these two fields. This trend motivates us
to explore whether MPI can benefit data warehouse systems,
such as Apache Hive. In this paper, we propose a novel design
to accelerate Apache Hive by utilizing DataMPI. We further
optimize the DataMPI engine by introducing enhanced non-
blocking communication and parallelism mechanisms for typical
Hive workloads based on their communication characteristics.
Our design can fully and transparently support Hive workloads
like Intel HiBench and TPC-H with high productivity. Perfor-
mance evaluation with Intel HiBench shows that with the help
of light-weight DataMPI library design, efficient job startup and
data movement mechanisms, Hive on DataMPI performs 30%
faster than Hive on Hadoop averagely. And the experiments on
TPC-H with ORCFile show that the performance of Hive on
DataMPI can improve 32% averagely and 53% at most more
than that of Hive on Hadoop. To the best of our knowledge, Hive
on DataMPI is the first attempt to propose a general design for
fully supporting and accelerating data warehouse systems with
MPI.

Keywords—Data Warehouse Systems, Apache Hive, Hadoop,
MPI, DataMPI, TPC-H

I. INTRODUCTION

Distributed management and analytics of large volumes
of data is a significant challenge being faced by the Big
Data community. Modern data warehouse systems have been
regarded as effective and important tools to obtain valuable
knowledge from Big Data. As one of the most important
examples, Apache Hive [1] is an open-source data warehouse
system upon the Hadoop framework [2] . It supports a con-
venient query language named HiveQL, which is a SQL-like
declarative language and easy to use [3]. Hive has a compiler
and an execution engine. The compiler translates the query into
MapReduce jobs and the execution engine submits the jobs to
Hadoop framework. Containing the basic elements of SQL,
HiveQL provides support to the tables composed of primitive
types, arrays, maps and the combination of them. Since Hive is
constructed upon the MapReduce programming model, it can
scale out easily and tolerate faults. It also supports user-defined
query functions. With these advantages, Hive gets recognized
and used widely in the distributed computing field.

However, current generation Apache Hive has not fully
embraced High Performance Computing (HPC) technologies
to deliver optimal performance on modern clusters for the
queries, even though the trend of converging Big Data and
HPC is emerging. For example, in traditional HPC field,
Message Passing Interface (MPI) [4] and its implementations
have been optimized and used popularly for HPC applications
during last decades to deliver ultra-high communication per-
formance on various high-performance networks (e.g. Infini-
Band [5] and 10/40 GigE). Recent studies [6], [7], [8], [9],
[10], [11] have shown that HPC communication technologies
(e.g. MPI, RDMA on high-performance networks) can improve
the performance of Big Data applications significantly. As a
specific example of the trend, DataMPI [7], [8] is an effi-
cient communication library aiming at extending MPI for Big
Data applications, which can productively support MapReduce
paradigm with better performance.

The trend of converging Big Data and HPC technologies
motivates us to explore whether MPI can benefit data ware-
house systems, such as Apache Hive. However, using MPI
to accelerate Apache Hive still has many questions to be
answered.

• What kinds of opportunities and challenges are
there to use MPI to accelerate Apache Hive? MPI
is mainly optimized for data movement. What kinds of
communication characteristics do typical Hive work-
loads have? Do we have opportunities to optimize the
data movement process? And how difficult can it be?
Is it feasible that the proposed design has minimal
modifications in Hive?

• Is it possible to use DataMPI to accelerate Apache
Hive? Although DataMPI has taken a further step to
bridge HPC and Big Data fields, can it be used to
accelerate Apache Hive? What kind of efficient design
can be proposed by utilizing DataMPI?

• How many performance benefits can be achieved
by using DataMPI? The major goal is to accelerate
Hive query performance by using MPI. Can DataMPI
significantly improve the performance for different
Hive workloads, like all the queries in TPC-H?

To address the above problems, this paper first investigates
the opportunities and challenges of accelerating Hive with
DataMPI to further discuss the motivation of our design.
Through the investigation, we find that typical Hive work-
loads have irregular communication characteristics, causing

the difficulties for the underlying data movement subsystem
design. Then, we present a plug-in-based design called Hive
on DataMPI to replace the low-level execution engine of
Hive from Hadoop to DataMPI. Aiming at Hive’s irregular
communication characteristics, we propose optimized non-
blocking communication with tuning and enhanced parallelism
mechanisms for the DataMPI engine. Through our systematical
performance evaluation, we observe that the performance of
Hive on DataMPI improves 30% on average than that of
Hive on Hadoop MapReduce for Intel HiBench workloads.
The further performance breakdown experiments with Intel
HiBench show that our design can improve the performance
of the shuffle phase (major data movement phase) by 20%-
70% in different jobs. Moreover, the factors of light-weight
framework, efficient job startup and data movement mecha-
nisms accelerate the Hive job execution. By further evaluating
our design with TPC-H [12], the results show that Hive
on DataMPI can fully and transparently support all TPC-H
queries, offering 20% and 32% better performance averagely
than Hive on Hadoop with Text and ORCFile formats [13],
respectively. The best case can achieve 53% improvement in
TPC-H Q12 query with a 20 GB ORCFile data set. Results
also show that Hive on DataMPI has good scalability, efficient
resource utilization, and high productivity.

To the best of our knowledge, Hive on DataMPI is the
first attempt to propose a general design to fully support and
accelerate data warehouse systems with MPI.

The rest of the paper is organized as follows. Section II
reviews the background of DataMPI. Section III presents the
opportunities and challenges of the whole idea. We present
the design of accelerating Apache Hive with DataMPI in
Section IV. Section V describes our detailed evaluation with
Hive on DataMPI. Section VI discusses the related work.
Section VII concludes this paper and presents our future work.

II. OVERVIEW OF DATAMPI

DataMPI [6], [7], [8] is aiming at extending MPI for
Big Data applications by proposing a bipartite communication
model and key-value pair based communication operations.
The bipartite communication model in DataMPI defines that
intermediate data moves from the tasks in communicator O
(Operators, like Mappers) to those in communicator A (Aggre-
gators, like Reducers) with user configurable data movement
behaviors. The key-value pair based communication operations
are more suitable for the data movement requirements of
Big Data applications than the buffer-to-buffer communication
operations in traditional MPI. Consequently, DataMPI can
efficiently and productively support different kinds of Big Data
applications [7], [9].

DataMPI provides kinds of modes for Big Data appli-
cations (e.g. common, iteration [14] and streaming). As the
most basic one, the common mode implements the bipartite
communication model and supports SPMD-style programming
like traditional MPI programming. And MapReduce appli-
cations can be rewritten with key-value pair based commu-
nication operations productively. A typical DataMPI appli-
cation is launched by the mpidrun command, then a set
of DataMPI working processes will be spawned to receive
and execute data-centric scheduled tasks. To maintain the

context of corresponding communicators in each scheduled
task, all MPI D routines should be surrounded by a pair
of MPI D.init() and MPI D.finalize() routines. The O tasks
and A tasks are created with MPI D.COMM BIPARTITE O
and MPI D.COMM BIPARTITE A, respectively. According
to the scheduling policy, the A tasks will be executed only
when all O tasks finish. To transfer each key-value pair
from O-side to A-side with a relaxed all-to-all communica-
tion pattern (like Shuffle), MPI D.send() routine in O tasks
sends the pairs and MPI D.recv() routine receives the pairs
in the A tasks. Detailed runtime information can be ob-
tained from MPI D.Comm rank() and MPI D.Comm size().
Moreover, user-defined functions (Partitioner, Combiner and
Comparator, etc.) can be set up in the configuration to satisfy
various requirements.

III. OPPORTUNITIES AND CHALLENGES

We take micro tests on our testbed, which will be intro-
duced in Section V, and breakdown the execution time of
the benchmarks with Intel HiBench [15] over a 20 GB data
set. Two queries are used including the AGGREGATE query
which groups the rows with one column attribute and the JOIN
query which joins one small table with another big table.
We breakdown each job execution time into three sections
according to the operations, including startup, Map-Shuffle and
others. The JOIN query has three stages in Hive and each
of which is a MapReduce job. The Map-Shuffle operation
overlaps the Map phase and Shuffle phase in Hadoop. As
shown in Figure 1, the average Map-Shuffle operation takes up
over 50% time of a MapReduce job, implying that optimizing
the data movement process of I/O bound workloads is an
opportunity to speed up Hive. Besides, startup time occupies
5% of total time, providing another opportunity to optimize.

Using MPI to accelerate data warehouse systems is full
of challenges, which are mainly listed as below: 1. MPI just
provides simple point-to-point/collective communication oper-
ations which is impossible to use MPI operations to replace all
underlying communication operations in Hive. It is a challenge
to propose a feasible design to make MPI fully support typical
Hive workloads, like Intel HiBench and TPC-H. We may
have to implement all complex partition/sort/spill operations,
etc, by using MPI for Hive. 2. It is hard to ensure that the
design has performance portability to adapt for different cluster
environments and fit various key-value types. However, using
DataMPI is a good choice to solve these challenges.

We also analyze the different communication patterns in
Hadoop under three situations (all are 20GB data sets): 1.
HiBench AGGREGATE benchmark over HiBench data; 2.
TeraSort benchmark over TeraGen data; 3. TPC-H Q3 query
with three tables’ JOIN operations over TPC-H data. As
shown in Figure 2, we observe two characteristics in Hive’s
communication pattern:

1) The skew time sequences of collecting operations:
Collect operations in Hadoop are called when key-
value pairs are ready to transfer. To analyze the
overhead between two consecutive collect operations
in Hive and Hadoop, we modify the collect operators
in Hadoop without actually sending key-value pairs
and record the time sequences when the Map collect

operations are called. Figure 2(a) and Figure 2(b)
show that when running HiBench AGGREGATE
benchmark in Hive, the ending time of Map tasks is
irregularly distributed from 19 seconds to 25 seconds,
while that of TeraSort benchmark in Hadoop is almost
centralized at 25 seconds. This is because when ex-
ecuting Hive benchmark, the processing complexity
is affected by varied operator execution paths and
sizes of input splits, while that of typical Hadoop
benchmark is well-distributed.

2) The variance between key-value pairs of collect-
ing operations: Figure 2(c) and Figure 2(d) show
that when executing HiBench AGGREGATE bench-
mark, the sizes of the sending key-value pairs are
centralized at 32 Bytes, while those in TPC-H Q3
benchmark are mainly distributed around 14 Bytes
and 32 Bytes. This is because the length of a key-
value pair sent by Hive applications differs from table
types and column types.

Our previous studies [16] show that DataMPI can ben-
efit MapReduce-like jobs for Big Data applications, but it
doesn’t optimize for irregular communication pattern in Hive’s
workloads. So it’s a challenge to solve the mismatch be-
tween Hive’s irregular computation-communication pattern
and MPI’s blocking/non-blocking communication.

 0

 50

 100

 150

 200

AGGREGATE JOIN

E
xe

cu
tio

n
 T

im
e

 (
se

c) Compile

JOB1 Startup

JOB1 Map-Shuffle

JOB1 Others

JOB2 Startup

JOB2 Map-Shuffle

JOB2 Others

JOB3 Startup

JOB3 Map-Shuffle

JOB3 Others

Others

Fig. 1. Performance Breakdown of Hive in HiBench

IV. DESIGN OF HIVE ON DATAMPI

A. Design Overview

In this section, we present the design of Hive on DataMPI.
In order to make DataMPI fully compatible with HiveQL, we
adopt the plug-in-based design principle, which means that we
mainly insert new functions and modify with minimal impacts
on original codes. In the meantime, plug-in-based Hive on
DataMPI could be easily integrated with newer Hive releases.

Figure 3 shows the loose coupling Hive on DataMPI
architecture and details about the compiler component. Hive
mainly provides client and JDBC/ODBC accesses, and Metas-
tore which stores metadata for Hive tables and partitions [17].
Besides the above components, the compiler and the execution
engine are the key components of Hive. The compiler contains
three stages. Firstly, semantic parser translates the query into
Abstract Syntax Tree (AST), does type checking and semantic
analysis to constitute the intermediate representation named

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25

T
a

sk
 I

D

Progression of Time (sec)

(a) HiBench AGGREGATE

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

T
a

sk
 I

D

Progression of Time (sec)

(b) TeraSort

 0

 10

 20

 30

 40

 50

 1000 2000 3000 4000

S
iz

e
 o

f
S

e
n

d
in

g
 K

e
y-

V
a

lu
e

 P
a

ir
s

(B
yt

e
s)

Collect ID

(c) HiBench AGGREGATE

 0

 10

 20

 30

 40

 50

 1000 2000 3000 4000

S
iz

e
 o

f
S

e
n

d
in

g
 K

e
y-

V
a

lu
e

 P
a

ir
s

(B
yt

e
s)

Collect ID

(d) TPC-H Q3

Fig. 2. Observation of Hive’s Irregular Operator Pattern Without Data
Transfer (20 GB Data Set)

CLI Thrift Server

Compiler

Execution Engine
(Hadoop/DataMPI)

JDBC/ODBC

Metastore

Hive

Semantic
Parser

Query
Block
Tree

Operator
Tree

Task

Logical Plan
Generator

Logical Plan
Optimizer

Physical Plan
Generator

Physical Plan
Optimizer

Fig. 3. Architecture Overview of Hive on DataMPI

the query block tree. Then, logical plan generator will organize
the operator DAG, or named operator tree. The optimizer is
important in Hive to get low latency upon Hadoop/DataMPI.
Hive defines framework independent operators in logical plan
with elaborate implementations, such as SelectOperator and
FilterOperator. The physical plan is generated and optimized
for Hadoop/DataMPI execution engine which is like a DAG
of tasks. Finally, the execution engine converts the plan into
different jobs and submits the jobs to the cluster.

To design the Hive on DataMPI, we conform to three
principles:

1) Keep the Hive architecture intact.
2) Support Hive with minimal modifications.
3) Optimize the execution engine of DataMPI according

to Hive’s communication pattern.

B. A Light-weight Design of Hive on DataMPI

To start, we observe the similarities and differences be-
tween Hadoop and DataMPI to determine what would be kept
or modified in Hive. They share the same or similar parts as
below:

1) HDFS support: DataMPI also supports HDFS data
access, so DataMPI can share the same input and out-

put files using existed Hive implementation without
extra modifications.

2) Similar semantics with MapReduce: Since
DataMPI’s common mode uses a bipartite
communication model to perform similar operations
like MapReduce, DataMPI can inherit the same
MapReduce operations in map() and reduce() by
adding a few extra codes to handle the key-value
pairs with MPI D send() and MPI D recv().

Benefited from the above two points, Hive on DataMPI
will not modify the operators already defined in Hive, and we
continue to share the query plan optimized for Hadoop. This
observation will simplify our implementation significantly.

But DataMPI still has two differences with MapReduce:

1) The runtime environment: DataMPI is a communi-
cation library instead of a framework. Hadoop jobs
can be submitted to JobTracker via JobClient, but
DataMPI jobs are launched from a mpidrun command
which is similar to MPI.

2) The execution flow in job: DataMPI’s common
mode supports SPMD-style programming like MPI
programs, rather than MPMD-style MapReduce pro-
gramming in Hadoop.

HDFS
and

Nodes
Driver

Parser

Semantic Analyzer

Logical Plan
Generator and Optimizer

Physical Plan
Generator and Optimizer

DataMPICompiler

 MapReduceCompiler

Compiler

DataMPI

Execution Engine

Hadoop

mpidrun

submit

DataMPITask Tree
and DataMPIWork

MapRedTask Tree
and MapredWork

Metastore

CLI
JDBC/ODBC

WEB GUI

HQL -> AST

AST -> QB

QB -> OP Tree

Hive QL

Fig. 4. Execution Flow of Hive on DataMPI

So Hive on DataMPI reserves the most parts of compiling
components in Hive. In Figure 4, we still keep the compiler’s
execution flow from a HiveQL query to an operator tree. In
order to start a DataMPI execution engine rather than a Hadoop
execution engine, the physical plan generator and optimizer
which converts an operator tree into a task tree has to be
replaced. Thus, we add a new physical plan generator called
DataMPICompiler. To make the new compiler selectable, users
need to set hive.execution.engine = “datampi” in the Hive
configuration.

DataMPICompiler generates DataMPIWork and DataMPI-
Task, which are physical query plans converted from the
existed operator tree. DataMPIWork describes the detailed op-
erators in a stage, and DataMPITask describes how to configure
and start a physical job. Due to the common mode of DataMPI
covering the semantics of MapReduce, we currently adopt the
same optimizing rules as Hadoop to divide the logical operator
tree into different stages. Therefore, DataMPIWork inherits
the same contents of MapredWork, including the MapWork
and ReduceWork. After a task tree is generated, the execution
engine will execute different jobs according to the information

wrapped in tasks. When compared with Hive on Hadoop,
DataMPIWork and DataMPITask are similar to MapredWork
and MapRedTask, respectively.

Hence, when a new query comes to Hive Driver, it is
first compiled into a series of DataMPITask objects. Then,
Hive Driver starts to execute this query plan’s task tree,
and DataMPITask’s execute() method constructs a DataMPI
starting command line and serializes the necessary objects onto
HDFS including DataMPIWork, configuration and split infor-
mation. The starting command line with mpidrun command is
shown as below:

mpidrun -f [hostfile]
-mode COM -O [ONum] -A [ANum] -jar hive-exec-0.13.1.jar
org.apache.hadoop.hive.ql.exec.dm.DataMPIHiveApplication
Dplan [tmp_dir]/plan.xml
Djobconf [tmp_dir]/jobconf.xml
Dsplit [tmp_dir]/split.xml

DataMPI runner spawns CommonProcess instances with
the entry class of DataMPIHiveApplication running on the
nodes configured in hostfile, and the processes are prepared
for executing ONum O tasks and ANum A tasks which are
specified by Hive. The parameters of plan, jobconf and split
indicate the locations of serialized DataMPIWork, configura-
tion and splits.

MPI_D.init()

Read Splits
With Record

Reader
MPI_D.recv()

ExecMapper
�map

(K,V,collector,..)

DataMPICollector
.collect(K, V)

MPI_D.send()

ExecReducer
.reduce

(K, Iter V,..)

MPI_D.finalize()

More? More?
No No

Yes <K, V>

Yes <K, Iter V>

CommonProcess

CommonProcess

O A

new
ExecMapper

.configure(job)

new
ExecReducer
.configure(job)

Is
Communicator

O/A?

ExecMapper/
ExecReducer

.close()

mpidrun

CommonProcess

DataMPIHiveApplicationDataMPIHiveApplication

Fig. 5. Execution Flow of DataMPIHiveApplication

When O tasks with MPI D.COMM BIPARTITE O are
scheduled, objects are first deserialized from HDFS and in-
stalled to support the remaining execution in DataMPIHiveAp-
plication. Then, as shown in Figure 5, MPI D context’s life
cycle is from MPI D.init() routine to MPI D.finalize() routine.
Since one key-value pair goes through the same procedure as it
does in the MapReduce Mapper, the process will invoke a new
ExecMapper to handle each key-value pair with configuring the

physical plan in JobConf. We replace the common MapReduce
Collector to a special DataMPICollector. Thus, whenever a
new record is read, the record is first transfered to the Ex-
ecMapper’s map() method. And when map() is returned, the
DataMPICollector’s collect() method will use MPI D.send()
to send the generated key-value pairs to the A-side (Reducer).

It is worth mentioning that DataMPI has overlapped
computation and communication operations by calling
MPI D.send() directly after each key-value pair is processed.
Hadoop’s reduce task starts to copy data until the first map
is finished at least. But receiving processes in DataMPI have
threads responsible for collecting and merging data when the
send data size of some O task exceeds a threshold but without
any O tasks finished. In this way, DataMPI can cache most of
the intermediate data in memory by default and send them
using high performance MPI communication directly. This
characteristic will make the shuffle phase between MapReduce
tasks efficient.

After all O tasks finalize, the scheduled A-side
processes will invoke DataMPIHiveApplication with
MPI D.COMM BIPARTITE A as A tasks, and receive
the key-value pairs by using MPI D.recv(). Similar to the
ExecMapper used in the O task, the A task invokes a new
configured ExecReducer by passing the key and the iterator
of same key’s value-list to ExecReducer’s reduce() function.

After all the A tasks finalize the MPI D context, a physical
plan ends. DataMPITask will do some cleaning work and
finally return the results to the Driver.

C. Optimizing DataMPI Engine for Hive Workloads

The shuffle operation in MapReduce will send distinct
data in Mappers to each of the Reducers, which is similar
to the MPI-AlltoAll communication. The Reducers have to
wait for the completion of the data transmission from Map-
pers to continue execution because of the data dependency
between Map and Reduce. To overlap the data transmission
and Map operations, Hadoop launches Map and Reduce tasks
concurrently, where Reduce tasks copy the intermediate data
from completed Map tasks. Different from the coarse-grained
communication mechanism of Hadoop, DataMPI provides
partition-based communication mechanism which can overlap
the data movement and computation efficiently.

DataMPI supports the relaxed all-to-all communication
pattern with blocking style and non-blocking style. Users can
set the communication mechanism according to the different
applications. In the buffer manager, DataMPI designs Send
Partition Lists (SPL), and each partition is used to store key-
value pairs for corresponding A tasks. When the send partitions
are full, they will be pushed into the send queue in the shuffle
engine, and wait for transmission. In the blocking style, the
shuffle engine starts a thread for transferring data, who will
create send/receive requests with MPI Isend, MPI Irecv and
use MPI Waitall to wait for all the send/receive operations
to return. The communication thread will be blocked until
all the data has been received successfully. Because each
send partition is small, the communication among the tasks
will be invoked multiple times in a relaxed all-to-all pattern.
The non-blocking style communication does not block all
the communication threads when the data is needed to move

among the tasks. To achieve the communication efficiently,
each communication manager starts two threads for trans-
ferring data to manage the send queue and receive queue,
respectively. Once the data is in the send queue, it will be
delivered without waiting for the other tasks participating in
the relaxed all-to-all communication.

We compare both communication styles with the typical
HiBench AGGREGATE benchmark over a 20GB data set.
We record the time of each send operation and plot the time
sequences for each O task in one graph. Figure 6 shows that
the execution time of O tasks in blocking style is 120 seconds,
while that in non-blocking style is 61 seconds. The lines of
the blocking communication are cut into several fragments,
and the span between two successive fragments reflects the
communication waiting overhead. Because of the data skew
in the AGGREGATE benchmark, each task operates different
sizes of data. When communicating in the blocking style,
much of time is cost to wait for the tasks to participate in
communication invocations, resulting in the synchronization
overhead and worse performance among the working threads
in a DataMPI task.

Based on the above observation, we further optimize the
non-blocking communication design in DataMPI for Hive
workloads. Figure 7 shows the communication design in
DataMPI. It has two components, the buffer manager and the
shuffle engine. The buffer manager is composed of partitions,
each of which has a data structure, including the raw buffer
data and the meta-information, such as the size of buffer
used, the number of cached key-value pairs, the offsets and
indices of each key-value pair in the buffer. The shuffle engine
will take one send partition and create a send request by
invoking MPI Isend. The request handlers will be cached in
the shuffle engine and the engine will test for the completion.
The shuffle engine also binds each receive request with one
receive partition which has sufficient space to receive data.
When one of the receive operations is completed, related data
partition will be cached in the buffer manager again.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120

T
a

sk
 I

D

Progression of Time (sec)

(a) Blocking Communication

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120

T
a

sk
 I

D

Progression of Time (sec)

(b) Non-blocking Communication

Fig. 6. HiBench AGGREGATE Benchmark with a 20GB Data Set

D. Parallelism Tuning and Optimization

Usually, the data distribution in a table is not uniform,
because the number of rows with a key may be much larger
or smaller than the number of rows with another key. With
the normal partition strategy, such as hash-partition, most of
the key-value pairs may be partitioned into several Reducers
in MapReduce paradigm, while the other Reducers may take
much less data to process. For example, we analyze the work-
load of TPC-H Q9 with a 40 GB data set to show the data skew
in Hive applications. By default, Hive launches 16 A tasks in
one of the stages when executing TPC-H Q9. The maximum

IR IR T/W
Request Handler

MPI-based
Shuffle Engine

IS IS T/W
Request Handler

Isend Request Queue
IS-Req

SP
IS-Req

SP

Irecv Request Queue
IR-Req

RP
IR-Req

RP

Buffer Manager

Partition Buffer Pool
Part N

Cached Buffer Pool

bfUsed kvNum kvOffset kvIndices kvBuffer

Part 1

Fig. 7. DataMPI Non-blocking Communication Design for Hive Application

number of records processed by one of the A tasks is 13x more
than the minimum number of records in another A task, and
the stage costs long time to finish. When the number of A tasks
increases to 28, which is the maximum number of executing
slots in Hive, the maximum number of records is 4x more
than the minimum one, and the execution time is cut down to
the 27% of the previous. This means increasing the execution
parallelism may alleviate the data skew problem. We provide
a parameter hive.datampi.parallelism = “enhanced/default” in
Hive on DataMPI for tuning the parallelism for applications.
When using default mode, the number of O tasks is based on
the number of input splits and less than the maximum number
of executing slots, and the number of A tasks conforms to the
Hive task scheduling policy. When using enhanced mode, the
number of A tasks is equal to the number of O tasks, and when
the job is the last stage in a query, the number of A tasks is
1.

In Hive workloads, much of memory in the applica-
tion level needs to be used to process the rows. To bal-
ance the memory between application and DataMPI li-
brary, Hive on DataMPI provides the buffer tuning parame-
ter hive.datampi.memusedpercent and hive.datampi.sendqueue.
We tune the size of send block queue (SQ) and the percentage
of cache memory on JOIN and AGGREGATE workloads of
HiBench with a 20 GB data set. As shown in Figure 8, when
the percentage of cache memory is 0.4, both workloads achieve
the best performance. When it is close to 0, the intermediate
data is spilled on disk and the performance decreases. When
it is close to 1, less memory for the application increases the
overhead of Java memory garbage collection and hurts the
performance. Besides, the waiting time in DataMPI between
calculation and data movement threads is based on the send
block queue. When increasing the size of send queue, the
waiting time decreases. Results show that when the size of
send queue is larger than 6, the performance becomes stable.

 95

 100

 105

 110

 115

 120

 125

 130

 135

 140

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
im

e
 (

se
c)

Buffer Memory Percentage

SQ = 1
SQ = 2
SQ = 4
SQ = 6
SQ = 8

(a) AGGREGATE

 140

 150

 160

 170

 180

 190

 200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
im

e
 (

se
c)

Buffer Memory Percentage

SQ = 1
SQ = 2
SQ = 4
SQ = 6
SQ = 8

(b) JOIN

Fig. 8. The Tuning of Cache Memory and Send Queue Size with a 20 GB
Data Set in Intel HiBench

V. EVALUATION

The section presents the evaluation of Hive on DataMPI.
We first present the performance benefits of Hive on DataMPI
with Intel HiBench and TPC-H workloads. Then, we analyze
the evaluation of Hive between Hadoop and DataMPI with
the execution breakdown and resource utilization. We also
compare the performance of Hive on DataMPI with Text and
ORCFile formats. Finally, we show the productivity statistics
of Hive on DataMPI with the plug-in-based approach.

A. Experiment Setup

Our testbed is a cluster with 8 nodes which are connected
by a Gigabit Ethernet switch. Each node is equipped with 2
Intel Xeon E5620 (2.4 Ghz) CPU processors with disabling
hyper-threads. Each E5620 CPU processor has 4 physical cores
with private L1, L2 caches and a shared LLC cache. And each
node has 4X4 GB DDR3 RAM and one 2TB SATA disk with
7200 RPM.

Each node is configured with the same software environ-
ment, CentOS 6.5(Final) with kernel 2.6.32-431.el6.x86-64 is
installed. In the following benchmarks, we adopt Intel HiBench
3.0 [15], TPC-H 2.17.0 [12], MVAPICH2-2.0b [18], DataMPI
0.6 [8], Hadoop 1.2.1 and JDK 1.7.0 25. Our proposed de-
sign is based on Hive 0.13.1. For the sake of fair, Hadoop
and DataMPI are assigned with the same concurrency level,
heap size, 1 master node and 7 slave nodes. The number
of MapReduce slots in Hadoop and O/A tasks in DataMPI
is configured to 4 in each node. The HDFS block size is
configured as the default value (64MB). For Hive, param-
eters hive.datampi.memusedpercent, hive.datampi.sendqueue
and hive.datampi.parallelism are set to 0.4, 6 and default,
respectively in consideration of trade-off.

TABLE I. HIBENCH AND TPC-H DATA SET SIZE USED IN
EXPERIMENT

Benchmark Table/Size 5 GB 10 GB 20 GB 40 GB

HiBench rankings 234 MB 467 MB 935 MB 1.83 GB
uservisits 4.4 GB 8.7 GB 17 GB 34 GB

TPC-H customer 234 MB 469 MB 938 MB
lineitem 7.3 GB 15 GB 30 GB
nation 4.0 KB 4.0 KB 4.0 KB
orders 1.7 GB 3.3 GB 6.6 GB
partsupp 1.2 GB 2.3 GB 4.6 GB
part 233 MB 466 MB 932 MB
region 4.0 KB 4.0 KB 4.0 KB
supplier 14 MB 28 MB 55 MB

We adopt the data sets generated by the HiBench generator
with various sizes of 5 GB, 10 GB, 20 GB, 40 GB and the
data sets generated by TPC-H data generator with sizes of 10
GB, 20 GB and 40 GB. The detailed data sizes are listed in
Table I. In order to perform a TPC-H benchmark using Hive,
the queries are modified to adapt for the HiveQL [19].

B. Performance Benefits on Intel HiBench

We select Intel HiBench’s Hive workloads as the micro
benchmarks. The data set of HiBench conforms to the Zipfian
distribution. By default, the input data uses sequence format.
Two workloads for Hive are chosen, including AGGREGATE
and JOIN. Figure 9 shows that Hive on DataMPI can averagely

achieve 29% and 31% improvements compared with Hadoop.

 0

 50

 100

 150

 200

 250

 300

5 10 20 40

E
xe

cu
tio

n
 T

im
e
 (

se
c)

Data Size (GB)

Hadoop
DataMPI

(a) AGGREGATE

 0

 50

 100

 150

 200

 250

 300

 350

5 10 20 40

E
xe

cu
tio

n
 T

im
e
 (

se
c)

Data Size (GB)

Hadoop
DataMPI

(b) JOIN

Fig. 9. Performance of Intel HiBench

To analyze the benefits of Hive on DataMPI, we break
down the execution of a query into three sections, including
query compiling, MapReduce jobs execution, and others. Each
MapReduce job is decomposed into startup phase, Map-Shuffle
(abbr. MS) phase and others. The time of startup is counted
from the job being submitted, to MapTask/OTask being in-
voked. The MS time covers the copy phase in Hadoop and O
phase in DataMPI. The time of others is counted by subtracting
the time of startup and MS from the total job execution time,
which contains the operations of merge, reduce, computation
and synchronization, etc. The results over a 20 GB data set
are shown in Figure 10.

The common difference is that all of the queries in Hive
on DataMPI have nearly 30% shorter startup time in DataMPI
than Hadoop, because DataMPI is more light-weight than
Hadoop.

AGGREGATE workload has one MapReduce job. It uses
the GroupBy operator to make the rows with the same key
aggregated in the same group. Figure 10 shows DataMPI
has 40% performance improvement on MS time. Because
DataMPI can overlap the computation and communication
efficiently with multi-threading design. The A phase locality
consideration makes data processed expediently.

JOIN workload contains three jobs which need to filter
the records from the two different tables within a particu-
lar data range and join them with the matching values for
corresponding field, calculate and finally output the results.
Figure 10 shows the MS time of DataMPI in JOB1 and JOB2
is 20% and 55% less than that of Hadoop, respectively. JOB1
benefits from the light-weight design of DataMPI and less
overhead of reading data than Hadoop. While JOB2 is similar
to AGGREGATE workload. JOB3 which only has 1 Mapper
and 1 Reducer simply sinks the results. The MS time of
DataMPI in JOB3 is 70% less than that of Hadoop, because
of the light-weight process management.

In summary, using DataMPI in Hive has performance im-
provements in the following three aspects: 1. The light-weight
library design reduces the overhead for process management;
2. DataMPI has an efficient data movement mechanism; 3.
DataMPI can benefit from the advantages of efficient MPI
communication.

C. Performance Benefits on TPC-H

This section shows the evaluation of Hive on Hadoop
and DataMPI with TPC-H workloads. Firstly, we compare

 0

 50

 100

 150

 200

HAD
 AGGREGATE

DM HAD
 JOIN

DM

E
xe

cu
tio

n
 T

im
e

 (
se

c) Compile

JOB1 Startup

JOB1 Map-Shuffle

JOB1 Others

JOB2 Startup

JOB2 Map-Shuffle

JOB2 Others

JOB3 Startup

JOB3 Map-Shuffle

JOB3 Others

Others

Fig. 10. Performance Breakdown for Intel HiBench with a 20 GB Data Set

the performance of both systems, with the Text format and
Optimized Row Columnar File (ORCFile) format. Table II
shows the results with a 40 GB data set. We observe the
performance with ORCFile format for Hadoop and DataMPI
has nearly 22% improvement compared with Text format. This
is because ORCFile format uses highly efficient way to store
Hive data.

TABLE II. PERFORMANCE OF TWO FILE FORMATS IN TPC-H
BENCHMARK WITH 40 GB DATA SETS. (UNIT: SEC)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

HAD-TEXT 208.65 202.07 340.40 350.08 422.68 193.08 684.37 541.92 1,045.68 388.11 160.60
HAD-ORC 91.48 183.72 242.02 274.08 291.55 55.91 439.43 422.5 1343.19 258.92 141.54
DM-TEXT 229.93 142.25 282.47 280.29 400.08 178.91 616.68 403.69 956.46 344.05 104.29
DM-ORC 90 130.46 196.74 174.54 222.78 44.16 423.09 359.19 1365.70 204.23 85.41

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

HAD-TEXT 252.58 196.33 201.67 276.05 224.50 470.32 633.45 352.53 353.49 1,042.18 228.11
HAD-ORC 149.62 276.11 81.04 106.62 268.46 323.7 505.63 302.68 204.49 728.59 274.41
DM-TEXT 229.09 137.57 178.52 203.31 196.16 432.55 549.09 252.62 307.89 897.08 159.35
DM-ORC 94.6 195.34 59.7 73.63 241.18 319.92 465.69 304.54 152.72 660.78 192.04

Furthermore, we break down the execution time of Hadoop
and DataMPI with a 40 GB data set in ORCFile format
with two different parallelism strategies, namely enhanced and
default as introduced in Section IV-D. For fair comparison, we
add the enhanced strategy of tasks schedule in Hive on Hadoop
as the same as that used in Hive on DataMPI. Figure 11 shows
the results. The tags of h and H represent tests of Hadoop with
default parallelism and enhanced parallelism, respectively, and
the tags of d and D represent tests of DataMPI with default
parallelism and enhanced parallelism, respectively.

The number of jobs in each query of DataMPI and Hadoop
is equal because of the same mechanism to generate physical
plan. Each bar in the figures is broken down into several jobs.
Each job is decomposed into Map/O and Reduce/A phases.
The length of the bar represents the total execution time of
the corresponding query.

The results show that Hadoop and DataMPI perform aver-
agely 14% and 23% improvements when using the enhanced
parallelism strategy compared with the default parallelism
strategy. When running Q9, the improvement of Hadoop with
enhanced strategy is 42% compared with default strategy,
while that of DataMPI is 56%. This is because when increasing
the parallelism degree, the data is partitioned more uniformly,
and the computation is paralleled more efficiently among tasks.
Besides, some queries do not benefit from the parallelism
strategies, such as Q1, Q6, Q11 and Q14. Because both
strategies get the similar execution parallelism.

Considering the enhanced strategy, DataMPI achieves 29%
performance improvement compared with Hadoop on average.
12 queries have more than 30% performance improvement, and
the minimum improvement (9%) comes from Q1 which is a
Map-only job to find the particular records. The benefits of
the queries come from the efficient communication design of
DataMPI, which have been pointed out before.

Adopting the enhanced strategy, we conduct experiments
with data sets varied from 10 GB to 40 GB to demonstrate the
scalability of DataMPI.

Figure 12 shows the execution time of 22 queries on
Hadoop and DataMPI with Text format and ORCFile format
over different data sizes. From the results, we observe that the
execution time has the similar growth trend in Hadoop and
DataMPI. The best case occurs in Q12 with a 20 GB ORCFile
data set with 53% improvement.

The performance improvements of DataMPI over Hadoop
for 22 queries are averagely 20% and 32% with Text format
and ORCFile format, respectively. This implies that DataMPI
has the similar scalability to Hadoop when running TPC-H
workloads. And when ORCFile format optimizes the table
storage, DataMPI can gain a 12% average improvement in
data movements.

D. Resource Utilization Analysis

This section shows the resource utilization of the TPC-H
Q9 between Hadoop and DataMPI with enhanced parallelism
strategy over a 40 GB data set. Because of the limited space,
we do not show the others. The dstat [20] tool is used to
collect the sampling data. The execution time of TPC-H Q9
with Hadoop and that of DataMPI is 802 seconds and 598
seconds, respectively.

Figure 13(a) shows the CPU utilization and the I/O-wait
CPU usage which indicates the overhead of CPU spent on
waiting for I/O operations. Results show that DataMPI has
slightly higher CPU utilization than Hadoop. However, the
execution time is 25% less than that of Hadoop.

As shown in Figure 13(b), the average bandwidths of disk
writing for Hadoop and DataMPI are 24 MB/sec and 25
MB/sec, while the peak bandwidths of that are 123 MB/sec
and 124 MB/sec. Both of Hadoop and DataMPI’s average and
peak bandwidths of disk reading reach nearly 3 MB/sec and 28
MB/sec, respectively. Since DataMPI caches a certain amount
of intermediate data in memory, it costs less time to perform
I/O operations than Hadoop.

Figure 13(c) shows that both of Hadoop and DataMPI will
achieve the maximum memory footprint. However, DataMPI
can achieve the upper memory footprint faster than Hadoop,
which means it can utilize the memory resource more effi-
ciently.

Figure 13(d) shows the bandwidth of network utilization.
The average achieved bandwidths of Hadoop and DataMPI are
20 MB/sec and 30 MB/sec, respectively. The peak bandwidths
of them are 79 MB/sec and 80 MB/sec. This indicates that
DataMPI can perform more efficiently to transfer data than
Hadoop. This benefits from the non-blocking design with MPI
in the shuffle engine and lightly optimized pipeline.

Overall, the benefits come from the efficient buffer man-
agement and data movement design in DataMPI to overlap the
computation, communication and I/O efficiently.

E. Productivity Analysis

Another advantage shown in transplanting DataMPI to
Hive’s execution engine is that DataMPI uses fairly small
amounts of codes. As an MPI extended data-computing li-
brary, DataMPI can fully support the workloads for Hive with
minimal changes. After the current design work, we make a
statistical analysis on the related code lines to support the
execution engine with Hadoop and DataMPI. The result is
shown in Table III. In the compiler part, we mainly concern the
components of MapReduceCompiler and DataMPICompiler.
The number of main different code lines in namespaces is
only 0.01K. In the execution engine part, we count the major
components (e.g Task, Work, Mapper, Reducer) listed in the
execution engine package. Except for inheriting nearly 1.1K
lines and refactoring 2.6K lines from Hive’s MapReduce
engine directly, we mainly change about 0.2K code lines. In the
component of others, we add a few DataMPI attributions and
configurations in Hive’s namespaces with nearly 0.1K lines.
Therefore, the shared code lines of entire Hive framework are
not listed in the table.

In summary, the main changed code lines are about 0.3K
totally. Hive on DataMPI’s high productivity is contributed by
a light-weight design of DataMPI, minimal impacts on Hive
and efficient support for HiveQL queries.

TABLE III. THE MAIN CHANGES FOR HIVE

Code Lines
for Hadoop

Code Lines
for DataMPI

Main Changes

Compiler 0.3K 0.3K 0.01K
Execution Engine 3.9K 2.8K 0.2K
Others — — 0.1K

VI. RELATED WORK

Big Data Computing with HPC technologies: Heofler
et al. [21] attempted to anticipate MPI to write MapReduce-
like applications. Plimpton et al. [22] proposed MR-MPI to
support graph algorithms with MapReduce operations based
on an MPI context. Recent work [10] showed the potential to
adapt RDMA [11] (Remote Direct Memory Access) for Spark
applications. Matsuda et al. [23] attempted to support TPC-
H with MPI and rewrote the workloads with MapReduce-like
programs. They stored the data in memory without external
storage support. Different from their work, this paper proposes
a design to fully support data warehouse system based on
DataMPI with small modifications on Hive, and provides fine
performance and scalability.

Other techniques to support Big Data in data ware-
house systems: Authors in [24] pointed out the shared noth-
ing architecture with partitioning the data in the horizontal
or vertical way, and compression-aware databases to sup-
port traditional data warehouse systems in high-performance
computers. Data Cube [25] used precomputed aggregation
calculations to provide efficient query processing in high-
performance computers to accelerate the On-Line Analytical
Processing (OLAP). YSmart [26] used a set of rules to

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

h

 Q1

d HD h

 Q2

d HD h

 Q3

d HD h

 Q4

d HD h

 Q5

d HD h

 Q6

d HD h

 Q7

d HD h

 Q8

d HD h

 Q10

d HD h

 Q11

d HD h

 Q12

d HD h

 Q13

d HD h

 Q14

d HD h

 Q15

d HD h

 Q16

d HD h

 Q17

d HD h

 Q19

d HD h

 Q20

d HD h

 Q22

d HD

E
xe

cu
tio

n
 T

im
e
 (

se
c)

(a) Part 1

 0

 200

 400

 600

 800

 1000

 1200

 1400

h

 Q9

dHD h

 Q18

dHD h

 Q21

dHD

E
xe

cu
tio

n
 T

im
e
 (

se
c)

(b) Part 2
Job1 Map/O

Job1 Reduce/A

Job2 Map/O

Job2 Reduce/A

Job3 Map/O

Job3 Reduce/A

Job4 Map/O

Job4 Reduce/A

Job5 Map/O

Job5 Reduce/A

Job6 Map/O

Job6 Reduce/A

Job7 Map/O

Job7 Reduce/A

Job8 Map/O

Job8 Reduce/A

Job9 Map/O

Job9 Reduce/A

Other

Fig. 11. Performance Breakdown for TPC-H with a 40 GB Data Set in ORCFile Format

0

200

400

600

800

1000

1200

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

E
xe

cu
tio

n
 T

im
e
 (

se
c)

HAD-10G

DM-10G

HAD-20G

DM-20G

HAD-40G

DM-40G

(a) Text Format

0

200

400

600

800

1000

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

E
xe

cu
tio

n
 T

im
e
 (

se
c)

HAD-10G

DM-10G

HAD-20G

DM-20G

HAD-40G

DM-40G

(b) ORCFile Format

Fig. 12. Performance Benefits of Hive on DataMPI for TPC-H in Two Different Table Formats (Text vs. ORCFile)

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800 900

C
P

U
 U

til
iz

a
tio

n
 (

%
)

Progression of Time (sec)

Hadoop Total Used
DataMPI Total Used

Hadoop Wait IO
DataMPI Wait IO

(a) CPU Utilization

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800 900

D
is

k
B

a
n
d
w

id
th

 (
M

B
/s

e
c)

Progression of Time (sec)

Hadoop Wt
DataMPI Wt

Hadoop Rd
DataMPI Rd

(b) Disk Bandwidth

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600 700 800 900

M
e
m

o
ry

 F
o
o
tp

ri
n
t
(G

B
)

Progression of Time (sec)

Hadoop DataMPI

(c) Memory Footprint

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800 900

N
e
tw

o
rk

 B
a
n
d
w

id
th

 (
M

B
/s

e
c)

Progression of Time (sec)

Hadoop Send
DataMPI Send

Hadoop Recv
DataMPI Recv

(d) Network Bandwidth

Fig. 13. Resource Utilization of TPC-H Q9 with a 40 GB Data Set

minimize the number of MapReduce jobs in Hive’s compiling
and speed up execution time. Our work focuses on improving
the communication efficiency in the data warehouse systems
with the high-performance techniques.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have analyzed the performance improve-
ment potential of a data warehouse system Apache Hive
brought by an MPI extended data communication library –
DataMPI. We have proposed a design of Hive on DataMPI
with full compatibility with HiveQL. Based on our study,
we make the following conclusions from the view points of

functionality, productivity, and performance:

• Hive on DataMPI can fully support and accelerate
data warehouse workloads. Our design has sup-
ported all Hive workloads including 2 micro queries
of Intel HiBench and 22 business oriented queries
of TPC-H. The efficient implementation can produce
correct results and improve the performance.

• DataMPI’s bipartite communication model and
key-value communication interfaces can enable
Hive on DataMPI productively. We only need to
change about 0.3K lines of core codes in Hive to
implement the required functions with DataMPI.

• DataMPI can benefit Hive’s execution perfor-
mance. Through Hive on DataMPI with enhanced
non-blocking communication and parallel mecha-
nisms, our design has achieved 30% better average
performance in Intel HiBench and can gain 32%
performance improvement than Hive on Hadoop av-
eraged over all the queries in TPC-H. The best case
can achieve 53% performance improvement in TPC-H
Q12 query with a 20 GB ORCFile data set.

We have shown early experiences of accelerating data
warehouse system with MPI. Hive on DataMPI is a pioneering
work to connect the HPC technologies with data warehouse
systems. We plan to extend our future research in three aspects:
1. explore more bottlenecks in Hive on DataMPI, and optimize
the performance; 2. evaluate Hive on DataMPI on different
high-performance clusters with larger data set sizes; 3. reduce
the overhead of intermediate files storing by supporting DAG
(Directed Acyclic Graph) distributed computing models.

ACKNOWLEDGMENT

This work is supported in part by the Hi-Tech Re-
search and Development (863) Program of China (Grant
No. 2013AA01A209, 2013AA01A213), the Strategic Prior-
ity Program of Chinese Academy of Sciences (Grant No.
XDA06010401) and the Guangdong Talents Program (Grant
No. 201001D0104726115).

REFERENCES

[1] “Apache Hive,” https://hive.apache.org.
[2] “Apache Hadoop,” http://hadoop.apache.org.
[3] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony,

H. Liu, and R. Murthy, “Hive - A Petabyte Scale Data Warehouse Using
Hadoop,” in Proceedings of the 2010 International Conference on Data
Engineering, 2010, pp. 996–1005.

[4] “MPI: A Message-Passing Interface Standard Version 3.0,”
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.

[5] I. T. Association, InfiniBand Architecture Specification: Release 1.0.
InfiniBand Trade Association, 2000.

[6] X. Lu, B. Wang, L. Zha, and Z. Xu, “Can MPI Benefit Hadoop and
MapReduce Applications?” in Proceedings of the 2011 International
Conference on Parallel Processing Workshops, 2011, pp. 371–379.

[7] X. Lu, F. Liang, B. Wang, L. Zha, and Z. Xu, “DataMPI : Extending
MPI to Hadoop-like Big Data Computing,” in Proceedings of the 2014
International Parallel and Distributed Processing Symposium, 2014, pp.
829–838.

[8] “DataMPI: Extending MPI for Big Data with Key-Value based Com-
munication,” http://datampi.org/.

[9] F. Liang, C. Feng, X. Lu, and Z. Xu, “Performance Characterization of
Hadoop and Data MPI Based on Amdahl’s Second Law,” in Proceed-
ings of the 2014 International Conference on Networking, Architecture,
and Storage, 2014, pp. 207–215.

[10] X. Lu, M. Wasi-ur Rahman, N. Islam, D. Shankar, and D. K. Panda,
“Accelerating Spark with RDMA for Big Data Processing: Early
Experiences,” in Proceedings of the 2014 Annual Symposium on High-
Performance Interconnects, 2014, pp. 9–16.

[11] “High-Performance Big Data (HiBD),” http://hibd.cse.ohio-state.edu/.
[12] “The TPC Benchmark H,” http://www.tpc.org/tpch/.
[13] Y. Huai, S. Ma, R. Lee, O. O’Malley, and X. Zhang, “Understanding

Insights into the Basic Structure and Essential Issues of Table Placement
Methods in Clusters,” Proceedings of Very Large Data Bases Endow-
ment, vol. 6, no. 14, pp. 1750–1761, 2013.

[14] F. Liang and X. Lu, “Accelerating Iterative Big Data Computing
Through MPI,” Journal of Computer Science and Technology, vol. 30,
no. 2, pp. 283–294, 2015.

[15] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench
Benchmark Suite: Characterization of the MapReduce-based Data Anal-
ysis,” in Proceedings of the 2010 International Conference on Data
Engineering Workshops, 2010, pp. 41–51.

[16] F. Liang, C. Feng, X. Lu, and Z. Xu, “Performance Benefits of
DataMPI: A Case Study with BigDataBench,” in Big Data Benchmarks,
Performance Optimization, and Emerging Hardware, ser. Lecture Notes
in Computer Science, J. Zhan, R. Han, and C. Weng, Eds. Springer
International Publishing, 2014, pp. 111–123.

[17] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy, “Hive: A Warehousing Solution
over a Map-Reduce Framework,” Proceedings of Very Large Data Bases
Endowment, vol. 2, no. 2, pp. 1626–1629, 2009.

[18] “MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RoCE,”
http://mvapich.cse.ohio-state.edu.

[19] “JIRA’s HIVE-600:Running TPC-H queries on Hive,”
https://issues.apache.org/jira/browse/HIVE-600.

[20] B. T. Johnson, “DSTAT: Software for the Meta-analytic Review of
Research Literatures”. Erlbaum, 1989.

[21] T. Hoefler, A. Lumsdaine, and J. Dongarra, “Towards Efficient MapRe-
duce Using MPI,” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, ser. Lecture Notes in Computer Science,
M. Ropo, J. Westerholm, and J. Dongarra, Eds. Springer Berlin
Heidelberg, 2009, pp. 240–249.

[22] S. J. Plimpton and K. D. Devine, “MapReduce in MPI for Large-Scale
Graph Algorithms,” Parallel Computing, vol. 37, no. 9, pp. 610–632,
2011.

[23] M. Matsuda, S. Takizawa, and N. Maruyama, “Evaluation of Asyn-
chronous MPI Communication in Map-Reduce System on the K
Computer,” in Proceedings of the 2014 European MPI Users’ Group
Meeting, 2014, pp. 163:163–163:168.

[24] D. J. DeWitt, S. Madden, and M. Stonebraker, “How to Build a
High-Performance Data Warehouse,” http://db.lcs.mit.edu/madden/high-
perf.pdf.

[25] S. Goil and A. Choudhary, “High Performance OLAP and Data Mining
on Parallel Computers,” Data Mining and Knowledge Discovery, vol. 1,
no. 4, pp. 391–417, 1997.

[26] R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and X. Zhang, “YSmart: Yet
Another SQL-to-MapReduce Translator,” in Proceedings of the 2011
International Conference on Distributed Computing Systems, 2011, pp.
25–36.

	142E423B-F1B5-4867-8BFB-717BA170B4EC: Off

